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FOREWORD

The work reported herein was performed at the Metals Behavior
Branch, Metals and Ceramics Division , Air Force Materials Laboratory
under Contract F33615-77-C-5003 wi th the Southeastern Center for
Electrical Engineering Education . The work was conducted by Dr. Donald
C. Stouffe r, on leave from the University of Cincinnati and Dr. Sol R.
Bodner, on leave from the Technion-Israel Institute of Technology in
Haifa . Air Force administrativ e direction and technical support was
provided by Dr. Theodore Nichol as, AFML/LLN.

The authors are grateful to Dr. Theodore Nicholas for arranging the
collaborat ive effort and providing a stimulating environment in which
to work. Also his comments during the project were very helpful.

The research was conducted dur ing the period July 1978 to October
1978. This report was submitted for publication In November 1978.
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SECTION I

INTRODUCTION

An unresolve d problem in the characterization of plastic deformation

of metals is the formulation of hardening laws that would real ist ical ly
represent hardening properties for completely genera l loading histories.

Most of the proposed theories follow classical plasticity so the problem

becomes one of predicting the size and shape of yield surfaces subsequent

to l oading in the plastic range. These laws are generally some combination

of the isotropic and kinematic hardening models and reduce to either of

those as a special case. A feature common to many of these hardening

laws is a “bac k stress ” term wh ich corresponds to a translation of the

origin in the kinematic model. Examples of these hardening formulations

have been di scusse d recen tly in the proceed i ngs of sever al conferen ces
(References 1 , 2, 3), and others have since been proposed (References 4, 5).

For constitutive equations that do not require a yield criterion ,

the corresponding problem is the determination of suitable evolutionary

equa ti ons for the i nternal state var i ab les . These var iab les appear in
the equations for plastic deformation rate and represent the load history
dependent worked state of the mater ial wit h res pect to p las ti c fl ow .
Most of the earlier work in the development of such constitutive equations

employed one or two scalar functions of deformation history for the

inelastic state variables. As an example , Bodrier and Partom (References

6, 7), used a single scalar function of plastic work as the inelastic

state variable for isotropic hardening conditions , e.g. uniaxial stress
with no Bauschinger effect. In this theory the plastic strain rate is

assumed to exist at all stress levels so the “back stress ” conce pt does
not appear to be particularly useful since it would correspond to a non-

zero plastic deformation rate at zero applied stress.

The main problem in generalizing the constitutive equations to
multidimensional stress states is the development of suitable evolu-
tionary equations for the inelastic state variables. These equations

are required to account for the loading induced changes in resistance

•

~ 
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to p lastic flow which vary in orientation as well as with the sign of

the applied stress (or plastic deformation rate). The material therefore

develops both orientational anisotropy and a multidimensional Baushinger

effect which depends upon the complete loading history . Under the most

genera l stress state with six stress components, a minimum of 12 inelas-

tic state variables (components) would be required to characterize the

material state with respect to plastic deformation ; this assumes a

single variable would apply for each orientation and direction of the

plastic rate of deformation component.

The purpose of this report is to develop a proper mathematical

formula ti on for the evolut i onary equa ti ons requ i red to rep resen t the
inelastic state of material subjected to general loading histories at

large deformations. The procedure is motivated by earlier work of

Bodner (Reference 8) and Onat (Reference 9) and the constitutive equations

of Bodner and Partom (References 6, 7, 10, 11) but the development is

completely general and could be applied to any set of constitutive

equations that employ inelastic state variables. A consequence of this

development is that a procedure is obtained that could account for
induced plastic anisotropy for arbitrary loading histories. The limi ted

comparisons possible with experimental data indicate that the proposed

procedure is consistent with these observations.

1

2
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SECTION II

A CONSTITUTIVE MODEL FOR ISOTROPIC DEFORMATIONS

Let 
~~ 

represent the rate of deformation In an Eulerian coordinate
system at any time t. The rate of deformation , defined as the symmetric
part of the veloc i ty gradient , is written as

d 1~ d~ + ~~ (1)

the composition of an elastic rate of deformation , ~~~ and an inelastic
(or plastic) rate of deformation ~~ . The elas ti c component i s fully
recovera ble whereas the inelastic component is nonrevers ible. The

decomposition (Equation 1) is a very fundamental part of the current
development since we assume that both components are non-zero under the

action of all non-zero deviatoric stress components. A continuous

representation of plastic flow is thereby obtained without the use of a
yield surface or loading and unloading conditions.

This study is directed toward developing a representation for
an isotropic plastic flow at large strains where the plastic anisotropy
could be initial , deformation induced , or both. Elastic strains for
metals are generally small even with large plastic deformations so it
would be generally appropriate to use an isotropic elastic formulation
if the material were initially isotropic. It is also well established

that large plastic deformations have small effects on the elastic con-

stants even with significant induced plastic anisotropy . The mathe-
matical treatment of the elastic deformation rate d~ at large strains
woul d then be tha t gi ven in Reference 11 . Strong elas ti c an i so tropy
could be treated by classical linear anisotropic elasticity if the

elastic strains were not large . The case of strong elastic anisotropy

and large elastic strains is practically rare and would have to be
treated as a special problem .

3
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The govern i ng law for isotropic, plastic deformation is taken in

a form similar to the Prandtl-Reuss flow law

d~1 
= ~~~~ ~~J2, Z~~ , T)S1~ (2)

The quantities d~ and S~ are the deviatoric components of the r3te of

plasti c deformation and stress tensors. Thus Equation 2 Implies that

isotropic inelastic deformation is isochoric. The scalar material

function \ is assumed to be a function of the second Invariant of the

deviatoric stress tensor , J2, the absolute temperature , T, and a set of

internal state variables, ZK. The quantities ZK are used to describe

the state of the material microstructure at any time t; thus, they - •

depend on the history of the deformation up to the current time t and

are given by an evolution equation of the form

Z
K
(t) = 

~K~~~’’ 
Z
k~ 

T) (3)

To begin to establish a definite structure for Equations 2 and 3,

let us use one specific component, z, of the vector ZK as a hardening

term ; e.g. an increase in z corresponds to an increase in the resistance

to plastic flow . Thus assume the hardening rate , i i s a monoton i call y
increasing function of the plastic work

J S~~(i)d ~~ (r)di (4 )  
-
~~~~~ 

-

Note that this formulation neglects hardening recovery (softening).

The evolution equation can be written as

z ( t )  = (5)

which can be expressed in the variables of Equation 3 as shown in

Section V. After integrating, Equation 5 gives

z ( t )  = + J ~(~ )dt (6)
0

0
where z is the initial hardness of the material.

4
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Under uniaxial flow conditions the material develops a directional

characteristic so that the rate of deformation is different for loading

in tension and compression ; i.e., the Bauschinger effect. This effect

can be expressed by introducing two hardness variables , z+(t) and [(t)

that are used for positive (tensile) and negative (compressive) rates

of plastic deformation , respectively. Mathematically, then

z(t) = z~~( t )  H (d~ 1) + z ( t )  H (_dç1 ) (7)

where d~1 is the uniaxial plastic deformation rate component and H is

the Heaviside unit step function . Notice that using Equation 7 in

Equation 4 does not produce a discontinuity in d~1 since the jump

from z+ to z , or v is-a-vis, occurs when d~1 is zero.

The values of i’(t) and z (t) can be determined from Equation 6 once

we develo p a rep resen ta ti on for and ~~~ , respectively. Recall z is

defined as the total rate of hardening due to an axial flow d~1.
Following the concepts of Reference 7 assume d~1 is positive and let qz
an d (l-q)~ correspond to the isotropic and directional hardening

fractions* so that ~
4
(t) q + (l-q)~ = ~(t) and z (t) = q - (l-q)~ =

(2q-l)~ . However if the d~1 
is negative rather than positive , then

the hardening in tension and compression is given by (2q-l)~ and ~~,

respectively. Thus we can write

.+ . . [ d~1(t)~~
z (t)  = q z + (1—q)z

L’’~’~ —

and

[ d~~(T) 1
= q z — (1—q)z~ I (8)

L~ 1(T) j

*These are similar to isotropic and kinematic models of yield surface
p1 as tic i ty.

5
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SECTION III

CONSTITUTIVE FRAMEWORK FOR AN ISOTROPIC PLASTIC FLOW

Consider the Prandtl-Reuss theory (Equation 2) for Isotropic plastic
flow. These laws have an important property ; namely a given deformation
rate component , dç1 for example is parallel to the corresponding stress

component S1 1. We will show that this property carries over to all

anisotropic materials.

Let us now rewrite the above theory to include anisotropic plastic

flow . The most genera l anisotropic flow equation can be written as

~~ = A
ijk~ 

S
k~ 

(10)

where Xjjk~ 
is a fourth order tensor valued function of J2, T, and

state variables. Using the symmetry of ~~ and S~ it follows that

A = A = A (11)
ijk2. j1k2. ij9-k

Mathematically and conceptually it is convenient to replace the

deviatoric stress and rate of deformation tensors in Equation 10 by

six-dimensional vectors on the vector space i~ , c~ l ,2,...6. Thus, let us
define

D = D  I and i~=~ I
= - 12

and normal ize the six-dimensional vector space such that

6 3 3 2 6~~ ~ 2
~~ ) ~ (d~~) and ~ T~ = ~ S~~

r~~~1 i 1  j 1  c~ l 1=1 j=1 (13)

7
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One such napping, satisfying Equation 13 is *

Di — d~1 T1 
— S11

— d~,., 
1 2 — S2~)

1
~~ 

F
3 

- s33 (14)

1) — s -it (1~~, 
— Y

/
~~

_ 

S
12

— ‘ .* (1~_ = I
/

~~

- 

S
23

- 1 6 = ~~ S31

Usin g this notation the plastic work, Equation 4 can be rewritten as

t
I i~( i)  . 1 ( i ) d i

~‘ J o (15)

The components of each of the two vectors T and D are linearly independent ,

a’ such th e vectors I and 0 are orthogonal Cartesian vectors . If we let
a represent a three-dimensional proper orthogonal transformation such
that S’ = a S a1, for example , then

I ’ • C T and D ’ (16)

where C is a six-dimensional proper orthogonal transformation that can

be ea~.il y constructed from the components of a.

Le t us flOW rewrite Equation 10 on the six-dimension of vector space as

I) — ‘~ 1 ~‘ ‘  
1) — :r -— — ~~~

-‘ m~

*A ?napprn(J s imi la r  to this,  except on a five-dimensional space, is given
by Ilyush in and Lensky (Reference 12).

8
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where \ is a six-dimensional square tensor. Let us assume that T can be
determined from a potential function . Then using conviiutat lvity of the

partia l derivative , it follows that

— s ’ r  \ —
— _ ~~~~ 

8

Since \ is symmetric and the components are real , there exist real

elgenvalues , \ . Thus using \ Q ~ Q
T , where Q Is a proper orthogonal

trans forma t ion , Equa ti on 17 become s

(19)

where \ is a 6 x 6 diagona l tensor. The ra te of deformation , D, and

stress , I, are vec tors tha t use the eigenvectors e~ of \ as a basis.

Equation 19 has the advantage that all the anisotropy properties can

be described by the six eigenvalues \~ 
and the transformation Q so that

• the structure of the equation Is particularly simple. The detai ls  for
determining 9 are delayed until the end of the next section .

Nex t we assume that each non-zero component of \ , can be expressed

as a single valued scalar function of the scalars J2, 1, and Z ., where
— 0 for ~ ~~. so that each non-zero component corresponds

direct ly to a non-zero component of \~~~ . Mathematically, this is written
as

— f (1 , ,T, 7. 1 , no sum on ‘ (20)

Since \ are diagonal elements of a second order tensor In the e basis ,
then Equation 20 implies that must also be diagonal components

of a second order tensor on the basis e~ , thus

— C Z ~:

•1 (21)

In the isotropic theory relating to Equation 2 we Imposed the
condition that the plastic flow Is Isochoric. For anisotropic flows this

9
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condition leads to considerable mathematic al difficulties as well as a
physicall y inconsistent theory . Using Equation 19 consIder the sum

+ 11 , -+ — ~~~ l’~ + k ,., •t ’
7 

+ ~~~ (22 )

If the material is isotropic, then A22 
\
33 

— A and Equation 22
become s

1) + D + D — \ ( S  + S ,., + S . - I — (1
1 2 3 11 (23)

for every choice of A . Thus the anisotrop ic flow mode l will reduce to

class ical incompressible I sotropic plasticity . However the volumetric

change D1 + D2 + D3 will not be Identically zero for anisotropic flows .

This appears to be consistent with experimental observations, since the
plast ic  Poisson ratio measured during plastic deformation Is generally
different from one half (Reference 15).

10
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SECTION IV

STRUCTURE OF THE STATE VARIABLES

To establish a representation of Z for anisotropic plastic flow
we follow the concepts underlying Equation 9. ThIs was used to Intro-

duce a nonsyninetric property Into the plastic flow equation so that the

response in tension and compression , or shear to the left and right , are
different. To maintain this characteristic let us define Z in the

follow ing manner

Z ( t)  — (t)Htn (t)J + z (t)H[—D (t)l (24)
Cl

where z~ ( t ) and Z~ (t) are the hardness variables for positive andci+~negative plastic deformation rates.

It is informative to consider three different classes of mechanical

properties.

a) A material is defined as ~~~~~~~~~~~~~~~~~~~~~ if

Z~ 1~(t ) — z~ (t )  I~~ (25a)

and
It ( t)  — z (t) I

(25 b )

for all time and deformation histories. The quantity is a six-
dimensional identity tensor,

— (26)
0 c~~~~o

Thus, accord ing to Equations 25 and 23 for equal values of stress, T
~
,

the deformation rates are the same In all six coordinate directions of the

same si gn. Further using either Equation 25a or 25b In Equation 21 g ives

(Z~ ) — C(z ~~t ) C T 
— z+I (27)

11
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which shows tha t /‘ (and [) are Identical in all coordinate directions.
Note that this result follows since Z transforms as a second order
diagonal tensor .

b) A material is skew s~yn~netr1c If

— (28)

for all time and deformation histories. This corresponds to no
Bauschinqer effects in a un ia x ia l deformation history . Using Equations
19 . 20, and ~S we can write , for example .

~~~~ r , :~~ ) 
~-T ) - - t ( . I~~, -1 ,

w h m h m~. skew symmetry of the material function f.

~) A material is defined as isotr~pjc If it Is both orientationally
isotropic and skew-symmetric.

Cons ider now the interna l state tensor Z. Since the only non-zero
components of / are on thc diagona l , 1 are elgenvalues of Z and e are
the elqenve~ tors . Thus I can be writt en as a six-dimensi ona l vector
in  the form

:‘~~ 
) — (t  ) (p9)

s _ s  .i

Referrin g to the structure of Equation 9, let us rewrite the vector ?
in the same genera l form ,

- + J ‘~~(mh h + i: ~~~ t d m  (30)

The ve itor is  used to spec i fy the initial hardness in each of the six
coordinate directions. The vectors and correspond to the rate
of fully isotropic and directional hardening, respectively. Note that +

isotropi hardening Is characterized by the first integra l in Equati on ‘) 4

whereas the second integra l in Equation 9 characterIzes orientatlonall y

_ _ _ _ _  - -~~



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

AFML-TR- 79-4015

aniso tropic and non-skew symmetric hardening. Thus we can use the first

integra l from Equation 9 directly into Equation 30 to obtain

S t t

i (t I  — ~ . + 
~ ( q ~(i)di + 

~ 
di (31)

- - ‘~ J o J o -

where ( t )  is calculated from Equation 5 using the total work as given
by Equation 15. Recall q Is a material parameter describing the relative

amount of fully isotropic hardening.

Us ing Equation 19 It can be seen that there Is a one to one relation-

ship between a deviator ic stress component T and the corresponding rate

of deformation D .  However, It Is not expected that the vectors T and

0 are parallel since the components of Z , and h~nce A, are not neces-

sar ily equal. Let us assume tha t the rate of change of resistance to

plastic flow (hardness) is due essentially to the plastic straining.

That is, the change in resistance to plastic flow is in the direction

of the rate of plast ic deformatIon 0; so that and 0 are parallel.
Expressed mathematica lly

— I 5 (32)

where u are the “direction cosines ” of the rate of deformation vector.

Hence we can write
0

U —
(1 fl~ (33)

and 10 1 (0.0) 112 This formulation gives the hardness as varying

according a cosine rule as proposed by Bodner (Reference 8). Using

again the second integra l of Equation 9 and noting tha t = (l-q)i(t)

we can write
f t

7(t )  — + 
~ J q i(i) di +

- Ci 0

0 (t) t

Ci I D~1(t)I 10 (1-q)z(t) u (i)di 
(34)

13
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Thus we have a specific form for the evolution of the tensor 1. This

representation is based on the main assumption that the rate of F
anisotropic hardening vector is pa rallel to the rate of plastic defor-

mation vector . The total anisotropy at any time depends on the integral
of ~

‘(
~ ) or the history ot the deformation . Thus , the representation

has the necessary path dependence.

Returning to Equation 19, it is necessary to know the transformation

9 in order to obtain a diagonal form for the material tensor ~~. From

Equation 34 it can be seen that Z is written relative to the basis e
- Cl

the eigenvectors , which are fIxed during the deformation history (0,t).
0

Thus the choice of 9 depends only upon the In itial anisotropy Z. which

is assumed to be a known ini tial condition . Further if the material
is initially isotropic , then every set of vectors e are eigenvectors

and the vectors 0 and T can be chosen such that the components are
phy sically convenient for the shape of the body .

There is a limited amount of experimental evidence available for

the anisotropic deformation of beryllium. In general, Nicholas

(Reference 13) has shown that a comprehensive anisotropic hardening

theory is necessary to predict the experimental results for beryllium.

The results published by Lindho lm , Yeakly, and Davidson (Reference 14)

for beryl lium in biaxi al tension showed that the above theory is

qualitatively consistent with the data in that the stress-strain curves

in the plastic range are ordered with loading history according to the

cosine law given by Equation 32.

t 
14 
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SECTION V

A SPECIFIC REPRES ENTATION

The purpose of this Section is to briefly sunii~arize the governing

equations for deformation Induced anisotropic plastic flow In a form

consistent with the Bodner-Partom model for isotropic plastic flows .

Squaring Equation 2 gives

D~ — X
2(J , z , T)J2 2 k  2 (35)

where D~ and are the second invariants of ~~ and S 1J~ 
respectively. L

Substituting Equation 35 into Equation 2 gives

~~ “~~~2’ 
Z
k

P T) 

~~~~~ 

(36)

This result is reminiscent of the Prandtl-Reuss theory except that no

yield surface is used with Equation 36; I.e., D~ is continuous. Using

one state variable and motivated by the equations of dislocation

dynamics, Bodner and Partom selected D~ such that

— exp [½ (-~.;-) ] /T2 (37)

where the constant D
~ 

i s the limi t ing stra in rate of the mater ial and n,
generally a function of temperature , relates to the strain rate sensi-

tivity . Since z is a single Internal variable that controls the rate

process it clearly must be a measure of the resistance to plastic flow

of the material. Specifically Equati on 5, Is chosen in the form

— m(~ 1 — z0
) exp [—in w (T ) ] L  = m(z

1 
— z )S 1~ ~~ (38 )

where m , z1, and z0 are constants controlling the rate and level of the

hardening characteristics, Equation 38 is consistent with the general

form for i, Equation 3.

15
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The representation for anisotropic flows can be completely determined
by combining the above Isotropic representation wi th the results in
Sections III and IV. The plastic deformation rate , Equation 19 becomes

r ~ n~~i T
P — ex p [_ ~~(~

_
~L) j ~~~~~ (39)

where 0 and I are the six-dimensional rate of deformation and deviatoric
Cl

stress vectors defined by the mapping (Equation 14). The components of
the hardening tensor are obtained by substituting Equation 38 into
Equati on 34.

The anisotrop ic plastic representati on , Equations 39, 38, and 34,
requ i res the use of five mat erial constants (q,n ,m,z11z 0) that must be
ie ’ t t ’rmined experimentally (D0 is a scale factor). It is useful to note
that these material parameters can all be determined from a one-dimensional
expe rimental program. There were no material functions introduced by
the anisotropy development. This leads to a specific mode l that can be
readily evaluated for different materials.

In closin g it is important to note that the constitutive equations
are a nonlinear coupled system that can , most likely be solved numerically.
Numerical finite difference and finite element procedures have been
developed to solve boundary value problem s under isotropic hardening
condit ions. It is expected that these codes can be modified to include
thi ’ an isot rop ic  model; however , to date no numerical work has been done
usin g the above system of equations.

L - 
16~~
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